Adsorption characteristics of dichloromethane-ethyl acetate/toluene vapor on a hypercrosslinked polystyrene adsorbent.
Yanbing CaoXiaoqi FeiXuanhao WuHaiqiang WangZhongbiao WuPublished in: RSC advances (2023)
Dichloromethane (DCM), a typical representative of chlorinated volatile organic compounds (CVOCs), is usually exhausted along with other volatile organic compounds (VOCs), such as toluene and ethyl acetate, in industrial factories. To address the complexity of the components, the large variation in concentration of each component and the water content of the exhaust gases emitted from the pharmaceutical and chemical industries, the adsorption characteristics of DCM, toluene (MB), and ethyl acetate (EAC) vapors on hypercrosslinked polymeric resins (NDA-88) were studied by dynamic adsorption experiments. Furthermore, the adsorption characteristics of NDA-88 for binary vapor systems of DCM-MB and DCM-EAC at different concentration ratios and the nature of the interaction force with the three VOCs were explored. NDA-88 was found to be suitable for treating binary vapor systems of DCM mixed with low concentrations of MB/EAC, and a small quantity of adsorbed MB or EAC would promote the adsorption of DCM by NDA-88, which is attributed to the microporous filling phenomenon. Finally, the influence of humidity on the adsorption performance of binary vapor systems for NDA-88 and the regeneration adsorption performance of NDA-88 were investigated. The presence of water steam shortened the penetration times of DCM, EAC, and MB, regardless of whether it was in the DCM-EAC or DCM-MB two-component systems. This study has identified a commercially available hypercrosslinked polymeric resin NDA-88, which has excellent adsorption performance and regeneration capacity for both single-component DCM gas and a binary mixture of DCM-low-concentration MB/EAC, providing experimental guidance for the treatment of emissions from pharmaceutical and chemical industries by adsorption.