A nasal chemosensation-dependent critical window for somatosensory development.
Linbi CaiAli Özgür ArgunşahAngeliki DamilouTheofanis KarayannisPublished in: Science (New York, N.Y.) (2024)
Nasal chemosensation is considered the evolutionarily oldest mammalian sense and, together with somatosensation, is crucial for neonatal well-being before auditory and visual pathways start engaging the brain. Using anatomical and functional approaches in mice, we reveal that odor-driven activity propagates to a large part of the cortex during the first postnatal week and enhances whisker-evoked activation of primary whisker somatosensory cortex (wS1). This effect disappears in adult animals, in line with the loss of excitatory connectivity from olfactory cortex to wS1. By performing neonatal odor deprivation, followed by electrophysiological and behavioral work in adult animals, we identify a key transient regulation of nasal chemosensory information necessary for the development of wS1 sensory-driven dynamics and somatosensation. Our work uncovers a cross-modal critical window for nasal chemosensation-dependent somatosensory functional maturation.