Login / Signup

Discovery of Phenylpyrazole Derivatives as a New Class of Selective Inhibitors of MCL-1 with Antitumor Activity.

Qineng GongChunpu LiHaojie WangJinrui CaoZuo LiMi ZhouYan LiYong ChuHong LiuRen-Xiao Wang
Published in: ACS omega (2024)
MCL-1, an antiapoptotic member of the BCL-2 family, is dysregulated and overexpressed in various tumors. In tumors with MCL-1 overexpression, selective inhibitors of MCL-1 are expected to overcome the drug resistance caused by BCL-2 inhibitors currently used in clinical treatment. Here, we employed docking-based virtual screening to identify an active hit, LC126, with binding affinity around 10 μM for MCL-1 and BCL-2. Under the guidance of structure-based design, we obtained a few selective inhibitors of MCL-1 after three rounds of structural optimization. The representative compound GQN-B37- E exhibited binding affinity for MCL-1 at the submicromolar range ( K i = 0.6 μM) without apparent binding to BCL-2 or BCL-X L . 15 N-heteronuclear single-quantum coherence NMR spectra suggested that this compound binds to the BH3-domain-binding pocket in the MCL-1 surface. Cellular assays revealed that GQN-B37-Me, the precursor of GQN-B37- E , is effective particularly on leukemia cells (such as H929 and MV-4-11) to induce caspase-dependent apoptosis. Its interaction with MCL-1 in cells was confirmed by coimmunoprecipitation. Administration of GQN-B37-Me to MV-4-11 xenograft mice at 50 mg/kg every 2 days for 20 days led to 43% tumor growth inhibition. GQN-B37-Me also exhibited reasonable in vitro stability in GSH and liver microsomes from several species. This new class of MCL-1 inhibitor may have potential to be further developed into a preclinical candidate for treating leukemia.
Keyphrases