Myeloid but not epithelial tissue factor exerts protective anti-inflammatory effects in acid aspiration-induced acute lung injury.
J B Kral-PointnerW C SchrottmaierV HorvathH DatlerL HellCihan AyB NiederreiterB JilmaJ A SchmidA AssingerN MackmanS KnappG SchabbauerPublished in: Journal of thrombosis and haemostasis : JTH (2017)
Introduction Acute lung injury (ALI) is a life-threatening condition characterized by damaged alveolar-capillary structures and activation of inflammatory and hemostatic processes. Tissue factor (TF) represents a crucial link between inflammation and coagulation, as inflammatory mediators induce myeloid TF expression, and TF initiates extrinsic coagulation. Objective As pulmonary inflammation stimulates TF expression and TF modulates immune responses, we aimed to elucidate its impact on ALI. In particular, we wanted to distinguish the contributions of TF expressed on airway epithelial cells and TF expressed on myeloid cells. Methods Mice with different cell type-specific TF deficiency and wild-type littermates were intratracheally treated with hydrochloric acid, and leukocyte recruitment, cytokine levels, thrombin-antithrombin (TAT) complexes and pulmonary protein-rich infiltrates were analyzed. Results Our data demonstrate that a lack of epithelial TF did not influence acute responses, as bronchoalveolar neutrophil accumulation 8 h after ALI induction was unaltered. However, it led to mild, prolonged inflammation, as pulmonary leukocyte and erythrocyte numbers were still increased after 24 h, whereas those in wild-type mice had returned to basal levels. In contrast, myeloid TF was primarily involved in regulating the acute phase of ALI without affecting local coagulation, as indicated by increased bronchoalveolar neutrophil infiltration, pulmonary interleukin-6 levels, and edema formation, but equal TAT complex formation, 8 h after ALI induction. This augmented inflammatory response associated with myeloid TF deficiency was confirmed in vitro, as lipopolysaccharide-stimulated TF-deficient alveolar macrophages released increased levels of chemokine (C-X-C motif) ligand 1 and tumor necrosis factor-α as compared with wild-type macrophages. Conclusion We conclude that myeloid TF dampens inflammation in acid-induced ALI.
Keyphrases
- wild type
- oxidative stress
- dendritic cells
- inflammatory response
- bone marrow
- acute myeloid leukemia
- pulmonary hypertension
- immune response
- lps induced
- lipopolysaccharide induced
- magnetic resonance
- rheumatoid arthritis
- intensive care unit
- metabolic syndrome
- toll like receptor
- cell death
- electronic health record
- magnetic resonance imaging
- signaling pathway
- machine learning
- diabetic rats
- cell proliferation
- respiratory failure
- aortic dissection