Enhancing the Stability of Strawberry Anthocyanins Complexed to β-Cyclodextrin and Starch toward Heat, Oxidation, and Irradiation.
Hussein M AliMohamed H AttiaEman N RashedPublished in: ACS omega (2024)
The instability of anthocyanins limits their application in food supplementation and in the food industry. Stabilities of strawberry anthocyanins (AN) were improved by complexation with both β-CD and starch against heat, H 2 O 2 , light, and UV irradiation. The stability of AN against H 2 O 2 (2.21 mM) dropped (<20%) in 6 h but was enhanced in β-CD (49.32%) and starch (96.84%) complexes. Under light conditions, AN in the solid and solution (3.88 g/100 mL) forms degraded to 36.49 and 11.11%, while β-CD and starch complexes displayed stabilities of 98.20 and 91.76%, respectively, after 60 days. Under UV irradiation, AN showed similar instability where both AN forms expressed stabilities of 36.75 and 66.18%, respectively, after 168 h, while β-CD and starch complexes exhibited 51.13 and 40.10%, respectively. LC-MS-ESI showed that photoirradiation of both destroyed the full conjugation of the flavylium ring of the major components, pelargonidin and cyanidin hexoses; the mechanism was proposed. Docking binding models of major AN components in β-CD were obtained.