Login / Signup

A Simple and Efficient Two-Dimensional High-Speed Counter-Current Chromatography Linear Gradient and Isocratic Elution Modes for the Preparative Separation of Coumarins from Roots of Toddalia asiatica (Linn.) Lam.

Wenya MaIftikhar AliYali LiHidayat HussianHuanzhu ZhaoXuan SunLei XieLi CuiDaijie Wang
Published in: Molecules (Basel, Switzerland) (2021)
Toddalia asiatica (L.) Lam. (Rutaceae) has shown a broad spectrum of biological properties, such as anti-inflammatory, antioxidant, antimicrobial, anti-HIV, and anticancer properties. The present study is concerned with the separation of the main components with broad partition coefficients (KD values) from T. asiatica, using linear gradient high-speed counter-current chromatography (LGCCC) combined with an off-line two-dimensional (2D) mode. Similar to the binary gradient HPLC, the LGCCC mode is operated by the adjustment of the proportion between the mobile phase of 5:5:1:9 (v/v) (pump A) and 5:5:4.5:5.5 (v/v) (pump B) in an n-hexane/ethyl acetate/methanol/water solvent system. The off-line 2D-CCC mode was used in this study for the secondary separation of two similar KD value compounds with n-hexane/ethyl acetate/methanol/water (5:5:4:6, v/v). Notably, six coumarins, namely, tomentin (1), toddalolactone (2), 5,7,8-trimethoxycoumarin (3), mexoticin (4), isopimpinellin (5), and toddanone (6), were efficiently separated. The structures of the pure compounds were elucidated by spectral techniques and compared with the literature.
Keyphrases