Login / Signup

Spin-exchange carrier multiplication in manganese-doped colloidal quantum dots.

Ho JinClément LivacheWhi Dong KimBenjamin T DirollRichard D SchallerVictor I Klimov
Published in: Nature materials (2023)
Carrier multiplication is a process whereby a kinetic energy of a carrier relaxes via generation of additional electron-hole pairs (excitons). This effect has been extensively studied in the context of advanced photoconversion as it could boost the yield of generated excitons. Carrier multiplication is driven by carrier-carrier interactions that lead to excitation of a valence-band electron to the conduction band. Normally, the rate of phonon-assisted relaxation exceeds that of Coulombic collisions, which limits the carrier multiplication yield. Here we show that this limitation can be overcome by exploiting not 'direct' but 'spin-exchange' Coulomb interactions in manganese-doped core/shell PbSe/CdSe quantum dots. In these structures, carrier multiplication occurs via two spin-exchange steps. First, an exciton generated in the CdSe shell is rapidly transferred to a Mn dopant. Then, the excited Mn ion undergoes spin-flip relaxation via a spin-conserving pathway, which creates two excitons in the PbSe core. Due to the extremely fast, subpicosecond timescales of spin-exchange interactions, the Mn-doped quantum dots exhibit an up-to-threefold enhancement of the multiexciton yield versus the undoped samples, which points towards the considerable potential of spin-exchange carrier multiplication in advanced photoconversion.
Keyphrases