Inspection on the Mechanism of SARS-CoV-2 Inhibition by Penciclovir: A Molecular Dynamic Study.
Micaela GiannettiClaudia MazzucaGiorgio RipaniAntonio PalleschiPublished in: Molecules (Basel, Switzerland) (2022)
In recent years, humanity has had to face a critical pandemic due to SARS-CoV-2. In the rapid search for effective drugs against this RNA-positive virus, the repurposing of already existing nucleotide/nucleoside analogs able to stop RNA replication by inhibiting the RNA-dependent RNA polymerase enzyme has been evaluated. In this process, a valid contribution has been the use of in silico experiments, which allow for a rapid evaluation of the possible effectiveness of the proposed drugs. Here we propose a molecular dynamic study to provide insight into the inhibition mechanism of Penciclovir, a nucleotide analog on the RNA-dependent RNA polymerase enzyme. Besides the presented results, in this article, for the first time, molecular dynamic simulations have been performed considering not only the RNA-dependent RNA polymerase protein, but also its cofactors (fundamental for RNA replication) and double-strand RNA.