Potential of Polygonum cuspidatum Root as an Antidiabetic Food: Dual High-Resolution α-Glucosidase and PTP1B Inhibition Profiling Combined with HPLC-HRMS and NMR for Identification of Antidiabetic Constituents.
Yong ZhaoMartin Xiaoyong ChenKenneth Thermann KongstadAnna Katharina JägerDan StaerkPublished in: Journal of agricultural and food chemistry (2017)
The worldwide increasing incidence of type 2 diabetes has fueled an intensified search for food and herbal remedies with preventive and/or therapeutic properties. Polygonum cuspidatum Siebold & Zucc. (Polygonaceae) is used as a functional food in Japan and South Korea, and it is also a well-known traditional antidiabetic herb used in China. In this study, dual high-resolution α-glucosidase and protein-tyrosine phosphatase 1B (PTP1B) inhibition profiling was used for the identification of individual antidiabetic constituents directly from the crude ethyl acetate extract and fractions of P. cuspidatum. Subsequent preparative-scale HPLC was used to isolate a series of α-glucosidase inhibitors, which after HPLC-HRMS and NMR analysis were identified as procyanidin B2 3,3″-O-digallate (3) and (-)-epicatechin gallate (5) with IC50 values of 0.42 ± 0.02 and 0.48 ± 0.0004 μM, respectively, as well as a series of stilbene analogues with IC50 value in the range from 6.05 ± 0.05 to 116.10 ± 2.04 μM. In addition, (trans)-emodin-physcion bianthrone (15b) and (cis)-emodin-physcion bianthrone (15c) were identified as potent PTP1B inhibitors with IC50 values of 2.77 ± 1.23 and 7.29 ± 2.32 μM, respectively. These findings show that P. cuspidatum is a potential functional food for management of type 2 diabetes.
Keyphrases
- high resolution
- ms ms
- human health
- molecular docking
- simultaneous determination
- tandem mass spectrometry
- mass spectrometry
- high performance liquid chromatography
- magnetic resonance
- single cell
- solid phase extraction
- oxidative stress
- bioinformatics analysis
- climate change
- high resolution mass spectrometry
- molecular dynamics simulations
- amino acid