Login / Signup

MR-based electrical property tomography using a physics-informed network at 3 and 7 T.

Mengxuan ZhengFeiyang LouYiman HuangSihong PanF Xiaotong Zhang
Published in: NMR in biomedicine (2024)
Magnetic resonance electrical propert tomography promises to retrieve electrical properties (EPs) quantitatively and non-invasively in vivo, providing valuable information for tissue characterization and pathology diagnosis. However, its clinical implementation has been hindered by, for example, B 1 measurement accuracy, reconstruction artifacts resulting from inaccuracies in underlying models, and stringent hardware/software requirements. To address these challenges, we present a novel approach aimed at accurate and high-resolution EPs reconstruction based on water content maps by using a physics-informed network (PIN-wEPT). The proposed method utilizes standard clinical protocols and conventional multi-channel receive arrays that have been routinely equipped in clinical settings, thus eliminating the need for specialized RF sequence/coil configurations. Compared with the original wEPT method, the network generates accurate water content maps that effectively eliminate the influence of B → 1 + and B → 1 - by incorporating data mismatch with electrodynamic constraints derived from the Helmholtz equation. Subsequent regression analysis develops a broad relationship between water content and EPs across various types of brain tissue. A series of numerical simulations was conducted at 7 T to assess the feasibility and performance of the method, which encompassed four normal head models and models with tumorous tissues incorporated, and the results showed normalized mean square error below 1.0% in water content, below 11.7% in conductivity, and below 1.1% in permittivity reconstructions for normal brain tissues. Moreover, in vivo validations conducted over five healthy subjects at both 3 and 7 T showed reasonably good consistency with empirical EPs values across the white matter, gray matter, and cerebrospinal fluid. The PIN-wEPT method, with its demonstrated efficacy, flexibility, and compatibility with current MRI scanners, holds promising potential for future clinical application.
Keyphrases