An Automated High-Throughput Screening (HTS) Spotter for 3D Tumor Spheroid Formation.
Mi-Hyeon JeongInhee KimKyunghyun ParkBosung KuDong Woo LeeKyoung Ryeol ParkSang Youl JeonJung Eun KimPublished in: International journal of molecular sciences (2023)
Three-dimensional (3D) culture platforms have been adopted in a high-throughput screening (HTS) system to mimic in vivo physiological microenvironments. The automated dispenser has been established commercially to enable spotting or distributing non-viscous or viscous biomaterials onto microplates. However, there are still challenges to the precise and accurate dispensation of cells embedded in hydrogels such as Alginate- and Matrigel-extracellular matrices. We developed and improved an automated contact-free dispensing machine, the ASFA SPOTTER (V5 and V6), which is compatible with 96- and 384-pillar/well plates and 330- and 532-micropillar/well chips for the support of 3D spheroid/organoid models using bioprinting techniques. This enables the distribution of non-viscous and viscous biosamples, including chemical drugs and cancer cells, for large-scale drug screening at high speed and small volumes (20 to 4000 nanoliters) with no damage to cells. The ASFA SPOTTER (V5 and V6) utilizes a contact-free method that minimizes cross-contamination for the dispensation of encapsulated tissue cells with highly viscous scaffolds (over 70%). In particular, the SPOTTER V6 does not require a washing process and offers the advantage of almost no dead volume (defined as additional required sample volume, including a pre-shot and flushing shot for dispensing). It can be successfully applied for the achievement of an organoid culture in automation, with rapid and easy operation, as well as miniaturization for high-throughput screening. In this study, we report the advantages of the ASFA SPOTTER, which distributes standard-sized cell spots with hydrogels onto a 384-pillar/well plate with a fast dispensing speed, small-scale volume, accuracy, and precision.