Login / Signup

The microenvironment and pKa perturbation of aminoacyl-tRNA guided the selection of cationic amino acids.

Bibhas HazraMahesh PrasadRajat RoyPradip K Tarafdar
Published in: Organic & biomolecular chemistry (2021)
The proteinogenic lysine (Lys) and arginine (Arg) have multiple methylene groups between α-carbon and the terminal charged centre. Why nature did not select ornithine (Orn), 2,4-diamino butyric acid (Dab) and 2,3-diamino propionic acid (Dpr) with fewer methylene groups in the side chain remains an important question! The propensity of aminoacyl-tRNA (aa-tRNA) model substrates towards self-degradation via intramolecular lactamization was studied using UV spectroscopy and 1H-NMR titration, which showed that Lys and Arg remain stable, and Orn and Dab cyclize to lactam. Hydrophobicity-assisted surface mediated model peptide formation highlighted that the microenvironment and pKa perturbation led to poor regioselectivity (α-amine vs. terminal amine) in Dpr and other non-proteinogenic analogues. The α-selectivity became even poorer in the presence of phosphate, making them ill-suited for peptide synthesis. Superior regioselectivity of the Lys aa-tRNA model substrate suggests that the extra methylene bridge helped nature to separate the microenvironments of the α-amine and ε-amine to synthesize the peptide backbone.
Keyphrases
  • amino acid
  • stem cells
  • high resolution
  • magnetic resonance
  • single molecule