Assembly and comparative analysis of the complete mitochondrial genome of Isopyrum anemonoides (Ranunculaceae).
Gulbar YisilamZhiyou LiuRayhangul TurdiZhenzhou ChuWei LuoXinmin TianPublished in: PloS one (2023)
Ranunculaceae is a large family of angiosperms comprising 2500 known species-a few with medicinal and ornamental values. Despite this, only two mitochondrial genomes (mitogenomes) of the family have been released in GenBank. Isopyrum anemonoides is a medicinal plant belonging to the family Ranunculaceae, and its chloroplast genome has recently been reported; however, its mitogenome remains unexplored. In this study, we assembled and analyzed the complete mitochondrial genome of I. anemonoides and performed a comparative analysis against different Ranunculaceae species, reconstructing the phylogenetic framework of Isopyrum. The circular mitogenome of I. anemonoides has a length of 206,722 bp, with a nucleotide composition of A (26.4%), T (26.4%), C (23.6%), and G (23.6%), and contains 62 genes, comprising 37 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, and three ribosomal RNA (rRNA) genes. Abundantly interspersed repetitive and simple sequence repeat (SSR) loci were detected in the I. anemonoides mitogenome, with tetranucleotide repeats accounting for the highest proportion of SSRs. By detecting gene migration, we observed gene exchange between the chloroplast and mitogenome in I. anemonoides, including six intact tRNA genes, six PCG fragments, and fragments from two rRNA genes. Comparative mitogenome analysis of three Ranunculaceae species indicated that the PCG contents were conserved and the GC contents were similar. Selective pressure analysis revealed that only two genes (nad1 and rpl5) were under positive selection during their evolution in Ranunculales, and two specific RNA editing sites (atp6 and mttB) were detected in the I. anemonoides mitogenome. Moreover, a phylogenetic analysis based on the mitogenomes of I. anemonoides and the other 15 taxa accurately reflected the evolutionary and taxonomic status of I. anemonoides. Overall, this study provides new insights into the genetics, systematics, and evolution of mitochondrial evolution in Ranunculaceae, particularly I. anemonoides.