Login / Signup

Permethylation as a strategy for high-molecular-weight polysaccharide structure analysis by nuclear magnetic resonance-Case study of Xylella fastidiosa extracellular polysaccharide.

Ikenna E NdukweIan BlackClaudia A CastroJiri VlachChristian HeissCaroline RoperParastoo Azadi
Published in: Magnetic resonance in chemistry : MRC (2023)
Current practices for structural analysis of extremely large-molecular-weight polysaccharides via solution-state nuclear magnetic resonance (NMR) spectroscopy incorporate partial depolymerization protocols that enable polysaccharide solubilization in suitable solvents. Non-specific depolymerization techniques utilized for glycosidic bond cleavage, such as chemical degradation or ultrasonication, potentially generate structural fragments that can complicate complete and accurate characterization of polysaccharide structures. Utilization of appropriate enzymes for polysaccharide degradation, on the other hand, requires prior structural knowledge and optimal enzyme activity conditions that are not available to an analyst working with novel or unknown compounds. Herein, we describe an application of a permethylation strategy that allows the complete dissolution of intact polysaccharides for NMR structural characterization. This approach is utilized for NMR analysis of Xylella fastidiosa extracellular polysaccharide (EPS), which is essential for the virulence of the plant pathogen that affects multiple commercial crops and is responsible for multibillion dollar losses each year.
Keyphrases
  • magnetic resonance
  • water soluble
  • high resolution
  • healthcare
  • primary care
  • escherichia coli
  • staphylococcus aureus
  • magnetic resonance imaging
  • computed tomography
  • transcription factor
  • cell wall