Login / Signup

Microbial Production of Natural and Unnatural Monolignols with Escherichia coli.

Jennifer AschenbrennerPatrick MarxJörg PietruszkaJan Marienhagen
Published in: Chembiochem : a European journal of chemical biology (2019)
Phenylpropanoids and phenylpropanoid-derived plant polyphenols find numerous applications in the food and pharmaceutical industries. In recent years, several microbial platform organisms have been engineered towards producing such compounds. However, for the most part, microbial (poly)phenol production is inspired by nature, so naturally occurring compounds have predominantly been produced to date. Here we have taken advantage of the promiscuity of the enzymes involved in phenylpropanoid synthesis and exploited the versatility of an engineered Escherichia coli strain harboring a synthetic monolignol pathway to convert supplemented natural and unnatural phenylpropenoic acids into their corresponding monolignols. The performed biotransformations showed that this strain is able to catalyze the stepwise reduction of chemically interesting unnatural phenylpropenoic acids such as 3,4,5-trimethoxycinnamic acid, 5-bromoferulic acid, 2-nitroferulic acid, and a "bicyclic" p-coumaric acid derivative, in addition to six naturally occurring phenylpropenoic acids.
Keyphrases
  • escherichia coli
  • microbial community
  • risk assessment
  • biofilm formation
  • african american