Login / Signup

Generation, transcriptomic states, and clinical relevance of CX3CR1+ CD8 T cells in melanoma.

Hirohito IshigakiTakayoshi YamauchiMark D LongToshifumi HokiYuta YamamotoTakaaki ObaFumito Ito
Published in: Cancer research communications (2024)
Recent progress in single-cell profiling technologies has revealed significant phenotypic and transcriptional heterogeneity in tumor-infiltrating CD8+ T cells. However, the transition between the different states of intratumoral antigen-specific CD8+ T cells remains elusive. Here, we sought to examine the generation, transcriptomic states, and the clinical relevance of melanoma-infiltrating CD8+ T cells expressing a chemokine receptor and T-cell differentiation marker, CX3C chemokine receptor 1 (CX3CR1). Analysis of single-cell datasets revealed two distinct human melanoma-infiltrating CD8+ T-cell clusters expressing CX3CR1 and PDCD1, whereas both clusters expressed genes associated with effector T cell function. No obvious impact of CX3CR1 expression in melanoma on the response to immune checkpoint inhibitor therapy was observed while increased pre- and on-treatment frequency of a CD8+ T-cell cluster expressing high levels of exhaustion markers was associated with poor response to the treatment. Adoptively transferred antigen-specific CX3CR1- CD8+ T cells differentiated into the CX3CR1+ subset in mice treated with FTY720, which inhibits lymphocyte egress from secondary lymphoid tissues, suggesting the intratumoral generation of CX3CR1+ CD8+ T cells rather than their trafficking from secondary lymphoid organs. Furthermore, analysis of adoptively transferred antigen-specific CD8+ T cells, in which the Cx3cr1 gene was replaced with a marker gene confirmed that CX3CR1+ CD8+ T cells could directly differentiate from the intratumoral CX3CR1- subset. These findings highlight that tumor antigen-specific CX3CR1- CD8+ T cells can fully differentiate outside the secondary lymphoid organs, and generate CX3CR1+ CD8+ T cells in the tumor microenvironment, which are distinct from CD8+ T cells that express markers of exhaustion.
Keyphrases