Synergistic effect of TONS504-mediated photodynamic antimicrobial chemotherapy and additives widely contained in ophthalmic solutions: benzalkonium chloride and ethylenediaminetetraacetic acid.
Koichiro ShinjiTaiichiro ChikamaShigetoshi OkazakiKentaro SueokaJi-Ae KoYoshiaki KiuchiTakemasa SakaguchiPublished in: Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology (2022)
TONS504 (C 51 H 58 N 8 O 5 I 2 ), a chlorine derivative, effectively generates singlet oxygen by light activation and exhibits photodynamic antimicrobial effects (PAEs) on various pathogens. However, this photosensitizer has some limitations: a high tendency to self-aggregate and a relatively weak PAE for Gram-negative bacteria compared with Gram-positive bacteria. To overcome these limitations, the present study investigated the synergistic effects of the PAE of TONS504 and two additives commonly contained in ophthalmic solutions: benzalkonium chloride (BAC) or ethylenediaminetetraacetic acid (EDTA). Staphylococcus aureus and Pseudomonas aeruginosa were exposed to TONS504 and/or each additive. Photodynamic antimicrobial chemotherapy was performed with light irradiation centered at a wavelength of 665 nm with a total light energy of 30 J/cm 2 . Following incubation, the number of colonies formed was counted. Additionally, we examined the inhibitory effects of the additives on TONS504 self-aggregation by observing its absorption spectrum. Consequently, the PAEs of TONS504 on S. aureus were enhanced by both additives, and BAC displayed stronger synergistic effects on the bacteria than EDTA. By contrast, only EDTA increased the PAE on P. aeruginosa. The peak of the TONS504 absorption spectrum shifted to a longer wave length and the absorbance increased in the presence of BAC, suggesting that BAC inhibited the self-aggregation of the photosensitizer. In conclusion, the combination of BAC or EDTA and TONS504-mediated photodynamic antimicrobial chemotherapy exhibits a synergistic antimicrobial effect on S. aureus and P. aeruginosa. The optimal additive to enhance the PAE may differ between bacterial strains.