Temperature-Dependent Biomarkers of Estrogenic Exposure in a Piscivore Freshwater Fish.
V R KornJ L WardP L EdmistonHeiko L SchoenfussPublished in: Archives of environmental contamination and toxicology (2020)
The biological effects of endocrine-active compounds and increasing water temperatures as a result of climate change have been studied extensively and independently, but there is a dearth of research to examine the combined effect of these factors on exposed organisms. Recent data suggest that estrogenic exposure and rising ambient temperatures independently impact predator-prey relationships. However, establishing these connections in natural settings is complex. These obstacles can be circumvented if biomarkers of estrogenic exposure in resident fish can predict changes in predator-prey relationships. To test the effects of estrone and temperature, the piscivore bluegill sunfish (Lepomis macrochirus) was exposed for 30 days to estrone at concentrations (90 ± 17.6 ng/L [mean ± standard deviation] and 414 ± 146 ng/L) previously shown to reduce prey-capture success. Exposures were conducted at four temperatures (15 °C, 18 °C, 21 °C, 24 °C) to simulate breeding season ambient temperatures across the natural range of this species. A suite of morphological and physiological biomarkers previously linked to estrogenic exposures were examined. Biomarkers of estrone exposure were more commonly and severely impacted in male fish than in female fish. Notably, the gonadosomatic index was lower and gonads were less mature in exposed males. Additionally, temperature modulated the effects of estrone similarly in males and females with fish exposed at higher temperatures typically exhibiting a decreased morphological index. This study provides evidence that alterations in hepatic function and gonadal function may cause shifts in metabolism and energy allocation that may lead to declining prey capture performance.