Plasmon-Enhanced Photocurrent from Photosystem I Assembled on Ag Nanopyramids.
Ravi PamuV Prasad SandireddyRamki KalyanaramanBamin KhomamiDibyendu MukherjeePublished in: The journal of physical chemistry letters (2018)
Plasmonic metal nanostructures have been known to tune optoelectronic properties of fluorophores. Here, we report the first-ever experimental observation of plasmon-induced photocurrent enhancements from Photosystem I (PSI) immobilized on Fischer patterns of silver nanopyramids (Ag-NP). To this end, the plasmonic peaks of Ag-NP were tuned to match the PSI absorption peaks at ∼450 and ∼680 nm wavelengths. Specifically, the plasmon-enhanced photocurrents indicate enhancement factors of ∼6.5 and ∼5.8 as compared to PSI assembly on planar Ag substrates for nominal excitation wavelengths of 660 and 470 nm, respectively. The comparable enhancement factors from both 470 and 660 nm excitations, in spite of a significantly weaker plasmon absorption peak at ∼450 nm for the Ag-NP structures, can be rationalized by previously reported excessive plasmon-induced fluorescence emission losses from PSI in the red region as compared to the blue region of the excitation wavelengths.