Genetic characterization of the Entamoeba moshkovskii population based on different potential genetic markers.
Sanjib K SardarAjanta GhosalTapas HaldarAkash PrasadSweety MalYumiko Saito-NakanoSeiki KobayashiShanta DuttaTomoyoshi NozakiSandipan GangulyPublished in: Parasitology (2024)
Entamoeba moshkovskii , according to recent studies, appears to exert a more significant impact on diarrhoeal infections than previously believed. The efficient identification and genetic characterization of E. moshkovskii isolates from endemic areas worldwide are crucial for understanding the impact of parasite genomes on amoebic infections. In this study, we employed a multilocus sequence typing system to characterize E. moshkovskii isolates, with the aim of assessing the role of genetic variation in the pathogenic potential of E. moshkovskii . We incorporated 3 potential genetic markers: KERP1, a protein rich in lysine and glutamic acid; amoebapore C (apc) and chitinase. Sequencing was attempted for all target loci in 68 positive E. moshkovskii samples, and successfully sequenced a total of 33 samples for all 3 loci. The analysis revealed 17 distinct genotypes, labelled M1–M17, across the tested samples when combining all loci. Notably, genotype M1 demonstrated a statistically significant association with diarrhoeal incidence within E. moshkovskii infection ( P = 0.0394). This suggests that M1 may represent a pathogenic strain with the highest potential for causing diarrhoeal symptoms. Additionally, we have identified a few single-nucleotide polymorphisms in the studied loci that can be utilized as genetic markers for recognizing the most potentially pathogenic E. moshkovskii isolates. In our genetic diversity study, the apc locus demonstrated the highest H d value and π value, indicating its pivotal role in reflecting the evolutionary history and adaptation of the E. moshkovskii population. Furthermore, analyses of linkage disequilibrium and recombination within the E. moshkovskii population suggested that the apc locus could play a crucial role in determining the virulence of E. moshkovskii .
Keyphrases
- genome wide
- genetic diversity
- genome wide association study
- dna methylation
- copy number
- single cell
- dna damage
- pseudomonas aeruginosa
- human health
- risk factors
- genome wide association
- small molecule
- amino acid
- cystic fibrosis
- physical activity
- antimicrobial resistance
- plasmodium falciparum
- solid state
- bioinformatics analysis