Effect of Physical Form and Level of Wheat Straw Inclusion on Growth Performance and Blood Metabolites of Fattening Goat.
Muhammad I MalikMuhammad A RashidMuhammad S YousafSaima NaveedKhalid JavedHabib RehmanPublished in: Animals : an open access journal from MDPI (2020)
The inclusion of straw in high concentrate total mixed rations (TMRs) of male fattening goats can provide the necessary fiber to prevent ruminal acidosis and maintain growth. The objective of this study was to evaluate the effects of the physical form (PF) of the diet (pelleted vs. conventional) and the straw level (SL) of wheat straw (WS) (15% versus 25%) in total mixed rations on feed intake, growth, total tract digestibility, and blood metabolites of fattening goats. Thirty-two male Beetal goats (27.4 ± 0.28 kg body weight (BW)) were divided randomly into the following four dietary treatments with a 2 × 2 factorial arrangement (n = 8/treatment): (1) CTMR15 (conventional TMR containing 15% WS), (2) CTMR25 (conventional TMR containing 25% WS), (3) PTMR15 (pelleted TMR containing 15% WS), and (4) PTMR25 (pelleted TMR containing 25% WS). Both conventional and pelleted 15% WS TMR had 33.7% neutral detergent fiber (NDF) and 19.3% acid detergent fiber (ADF), whereas in 25% WS TMR the NDF and ADF contents were 38.7% and 22.9%, respectively. The experimental diets were formulated to be iso-nitrogenous (crude protein (CP) = 15%). The dry matter intake (DMI) (1.265 vs. 1.044 kg/day) and average daily gain (ADG) (0.176 vs. 0.143 kg/day) were higher (p < 0.05) in pelleted vs. conventional TMR-fed goats. Irrespective of the PF of the TMR, the 15% WS-fed animals had greater (p < 0.05) DMI (1.206 vs. 1.102 kg/day) and ADG (0.172 vs. 0.144 kg) when compared to those fed on 25% WS diets. Furthermore, feed-to-gain ratio (F:G) was higher (p < 0.05) in the 25% WS-fed goats when compared with the 15% WS-fed animals. Digestibility coefficients, nitrogen balancing, hepatic enzymes, blood metabolites, and hematological parameters were similar (p > 0.05) across all treatments. In conclusion, feeding pelleted TMR with WS improved DMI and growth performance as compared to those fed conventional TMR, and 15% WS performed better than 25% WS without exerting any adverse effects on blood metabolites, liver enzymes, or hematological parameters.