Login / Signup

Neural waves and computation in a neural net model II: Data-like structures and the dynamics of episodic memory.

Stephen Selesnick
Published in: Journal of computational neuroscience (2024)
The computational resources of a neuromorphic network model introduced earlier were investigated in the first paper of this series. It was argued that a form of ubiquitous spontaneous local convolution enabled logical gate-like neural motifs to form into hierarchical feed-forward structures of the Hubel-Wiesel type. Here we investigate concomitant data-like structures and their dynamic rôle in memory formation, retrieval, and replay. The mechanisms give rise to the need for general inhibitory sculpting, and the simulation of the replay of episodic memories, well known in humans and recently observed in rats. Other consequences include explanations of such findings as the directional flows of neural waves in memory formation and retrieval, visual anomalies and memory deficits in schizophrenia, and the operation of GABA agonist drugs in suppressing episodic memories. We put forward the hypothesis that all neural logical operations and feature extractions are of the convolutional hierarchical type described here and in the earlier paper, and exemplified by the Hubel-Wiesel model of the visual cortex, but that in more general cases the precise geometric layering might be obscured and so far undetected.
Keyphrases
  • working memory
  • high resolution
  • traumatic brain injury
  • bipolar disorder
  • neural network
  • machine learning
  • big data
  • signaling pathway
  • artificial intelligence