Login / Signup

Convenient synthesis of three-dimensional hierarchical CuS@Pd core-shell cauliflowers decorated on nitrogen-doped reduced graphene oxide for non-enzymatic electrochemical sensing of xanthine.

Ying CuiJunhua LiMengqin LiuHaixia TongZeng LiuJiawen HuDong Qian
Published in: Mikrochimica acta (2020)
A novel hybrid with three-dimensional (3D) hierarchical CuS@Pd core-shell cauliflowers decorated on nitrogen-doped reduced graphene oxide (CuS@Pd/N-RGO) has been prepared by a facile wet-chemical route without utilizing any template molecules and surfactants. The characterization results reveal that the 3D flower-like structure of CuS "core" is composed of interconnecting nanoplates, which is conductive to the loading of Pd nanoparticles' "shell" and results in the robust interaction between the core and shell for the formation of CuS@Pd cauliflowers. Anchoring such appealing CuS@Pd cauliflowers on the two-dimensional N-RGO can efficaciously inhibit the aggregation of CuS@Pd cauliflowers and accelerate the kinetics of xanthine oxidation. Benefiting from the multi-functional properties and unique morphology, the sensor constructed by CuS@Pd/N-RGO exhibits excellent performance for non-enzymatic detection of xanthine including a wide detection range of 0.7-200.0 μM (0.94 V vs. SCE), a low detection limit of 28 nM (S/N = 3), high reproducibility (relative standard deviation (RSD) = 4.1%), and commendable stability (retained 90% of the initial electrochemical responses after storage for 30 days), which is amongst the best of various electrochemical sensors reported for xanthine assays till date. Reliable and satisfying recoveries (95-105%, RSD ≤ 4.1%) are achieved for xanthine detection in real samples. The inspiring results make the uniquely structural CuS@Pd/N-RGO greatly promising in non-enzymatic electrochemical sensing applications. Graphical abstract A high-performance non-enzymatic xanthine sensor has been constructed by the three-dimensional hierarchical CuS@Pd core-shell cauliflowers decorated on nitrogen-doped reduced graphene oxide.
Keyphrases
  • reduced graphene oxide
  • gold nanoparticles
  • label free
  • uric acid
  • hydrogen peroxide
  • wastewater treatment
  • ionic liquid
  • genome wide
  • gene expression
  • high resolution
  • quantum dots