Therapeutic prospects of microRNAs derived from mesenchymal stem cell extracellular vesicles in rheumatoid arthritis: a comprehensive overview.
Armin AkbarzadehMohammad Hadi GeramiMajid Reza FarrokhiShima ShapooriMorteza JafariniaPublished in: Molecular and cellular biochemistry (2024)
Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by inflammatory joint damage. Recent studies have focused on the significance of microRNAs (miRNAs) in the pathogenesis of RA. Mesenchymal stem cells (MSCs) have emerged as a potential therapeutic option for RA based on their regenerative and immunomodulatory properties. MSCs release extracellular vesicles (EVs) containing miRNAs that can modulate immune and inflammatory responses. This article provides a comprehensive overview of the current evidence on the existence of various MSCs-derived miRNAs involved in the pathophysiology, characterization, and treatment of RA. An overview of the miRNA profiles in MSC-EVs is provided, along with an examination of their impact on various cell types implicated in RA pathogenesis, including synovial fibroblasts, macrophages, and T cells. Furthermore, the therapeutic capability of MSC-EVs for miRNA-based therapies in RA is discussed. In total, this review can present an extensive view of the complex interaction between EVs and MSC-derived miRNAs in RA and thus suggest valuable strategies for developing new therapeutic approaches to target this debilitating disease.