Active site dynamics and catalytic mechanism in arabinan hydrolysis catalyzed by GH43 endo-arabinanase from QM/MM molecular dynamics simulation and potential energy surface.
Wijitra MeeluaTanchanok WanjaiNatechanok ThinkumrobJulianna OláhJon I MujikaJames R Ketudat-CairnsSupa HannongbuaJitrayut JitonnomPublished in: Journal of biomolecular structure & dynamics (2021)
The endo-1,5-α-L-arabinanases, belonging to glycoside hydrolase family 43 (GH43), catalyse the hydrolysis of α-1,5-arabinofuranosidic bonds in arabinose-containing polysaccharides. These enzymes are proposed targets for industrial and medical applications. Here, molecular dynamics (MD), potential energy surface and free energy (potential of mean force) simulations are undertaken using hybrid quantum mechanical/molecular mechanical (QM/MM) potentials to understand the active site dynamics, catalytic mechanism and the electrostatic influence of active site residues of the GH43 endo-arabinanase from G. stearothermophilus. The calculated results give support to the single-displacement mechanism proposed for the inverting GH43 enzymes: first a proton is transferred from the general acid E201 to the substrate, followed by a nucleophilic attack by water, activated by the general base D27, on the anomer carbon. A conformational change (2E ↔E3 ↔ 4E) in the -1 sugar ring is observed involving a transition state featuring an oxocarbenium ion character. Residues D87, K106, H271 are highlighted as potential targets for future mutation experiments in order to increase the efficiency of the reaction. To our knowledge, this is the first QM/MM study providing molecular insights into the glycosidic bond hydrolysis of a furanoside substrate by an inverting GH in solution.Communicated by Ramaswamy H. Sarma.