Login / Signup

Development of an electrophoretic method based on nanostructured materials for HbA1c determination.

Sasha Cai Lesher-PérezNarella BassiDenise Agata Grela
Published in: Electrophoresis (2018)
Glycosylated hemoglobin (HbA1c) detection is performed routinely in hospitals as it is the most widespread confirmatory diagnosis of diabetes mellitus. Here we present a novel CE method for measuring HbA1c by introducing silica nanoparticles (NPs) modified with a boronic acid derivative (sugar loadings of 51 ± 2 μg/mg) as pseudo-stationary phase. Before the sample injection, SiO2 NP─B(OH)2 were introduced via pressure. Electrophoretic separation was explored through variation of the buffer pH and separation voltage, being the best separation, resolution and shorter separation time achieved with a 25 mM phosphate buffer pH 6.5. The calibration curve obtained was expressed as Area = 182.05%-1 × HbA1c - 377.02; R2  = 0.9826, using a UV/VIS absorbance detector at 415 nm (diode array). No interferences were observed from carbamylated or acetylated hemoglobin and the method shows a noteworthy stability. A paired t-test was applied to compare the developed CE method with a commercial HbA1c test and no significant variations have been observed at a 90% significance level.
Keyphrases