Cancellous-Bone-like Porous Iron Scaffold Coated with Strontium Incorporated Octacalcium Phosphate Nanowhiskers for Bone Regeneration.
Jin HeHaixia YeYulei LiJu FangQingsong MeiXiong LuFuzeng RenPublished in: ACS biomaterials science & engineering (2019)
The repair of large bone defects poses a grand challenge in tissue engineering. Thus, developing biocompatible scaffolds with mechanical and structural similarity to human cancellous bone is in great demand. Herein, we fabricated a three-dimensional (3D) porous iron (Fe) scaffold with interconnected pores via a template-assisted electrodeposition method. The porous Fe scaffold with a skeleton diameter of 143 μm had the porosity >90%, an average pore size of 345 μm, and a yield strength of 3.5 MPa. Such structure and mechanical strength were close to those of cancellous bone. In order to enhance the biocompatibility of the scaffold, strontium incorporated octacalcium phosphate (Sr-OCP) was coated on the skeletons of the porous Fe scaffold. The coated Sr-OCP was in the form of nanowhiskers with a mean diameter of 300 nm and length of 30 μm. Such Sr-OCP coating could effectively reduce the release rate of the Fe ions to a level which was safe for the human body. Both in vitro cytotoxicity tests by extraction method and direct contact assay confirmed that the Sr-OCP coating could promote the cell adhesion and substantially enhance the biocompatibility of the porous Fe scaffolds. Thus, the cancellous-bone-like porous structure with compatible mechanical properties and excellent biocompatibility enables the present Sr-OCP coated porous Fe scaffold to be a promising candidate for bone repair and regeneration.