In vitro leishmanicidal effects of the anti-fungal drug natamycin are mediated through disruption of calcium homeostasis and mitochondrial dysfunction.
Bhanu Priya AwasthiKalyan MitraPublished in: Apoptosis : an international journal on programmed cell death (2019)
Natamycin, a Food and Drug Administration approved anti-fungal drug, and also used as a food additive was evaluated for anti-leishmanial activity since it is known to specifically bind to ergosterol, which is essential to these parasites but absent in mammals. Promising anti-proliferative activity was observed in both promastigote and amastigote forms of the parasite with IC50 values of 15 and 8 µM respectively and a selective index of 12.5. The ultrastructural effects of natamycin on both forms of the parasite and physiological effects on promastigotes were studied in detail for the first time. Electron microscopic observations in treated cells revealed sub-cellular changes like plasma membrane alterations, accumulation of vesicles in the flagellar pocket and extensive mitochondrial damage. Natamycin treatment in promastigotes resulted in elevation of cytosolic calcium (Ca2+) levels which caused irreversible loss of mitochondrial membrane potential. This resulted in depletion of cellular ATP levels along with ROS generation finally leading to apoptosis-like and necrotic cell death. In view of our observations along with the safety profile of an existing anti-fungal drug, natamycin may be further investigated for repurposing it as a promising drug candidate against Leishmaniasis.