Novelty Search Promotes Antigenic Diversity in Microbial Pathogens.
Brandon ElyWinston KohEamen HoTasmina M HassanAnh V PhamWei-Gang QiuPublished in: Pathogens (Basel, Switzerland) (2023)
Driven by host-pathogen coevolution, cell surface antigens are often the fastest evolving parts of a microbial pathogen. The persistent evolutionary impetus for novel antigen variants suggests the utility of novelty-seeking algorithms in predicting antigen diversification in microbial pathogens. In contrast to traditional genetic algorithms maximizing variant fitness, novelty-seeking algorithms optimize variant novelty. Here, we designed and implemented three evolutionary algorithms (fitness-seeking, novelty-seeking, and hybrid) and evaluated their performances in 10 simulated and 2 empirically derived antigen fitness landscapes. The hybrid walks combining fitness- and novelty-seeking strategies overcame the limitations of each algorithm alone, and consistently reached global fitness peaks. Thus, hybrid walks provide a model for microbial pathogens escaping host immunity without compromising variant fitness. Biological processes facilitating novelty-seeking evolution in natural pathogen populations include hypermutability, recombination, wide dispersal, and immune-compromised hosts. The high efficiency of the hybrid algorithm improves the evolutionary predictability of novel antigen variants. We propose the design of escape-proof vaccines based on high-fitness variants covering a majority of the basins of attraction on the fitness landscape representing all potential variants of a microbial antigen.
Keyphrases
- body composition
- physical activity
- machine learning
- microbial community
- mental health
- deep learning
- copy number
- genome wide
- high efficiency
- candida albicans
- gene expression
- antimicrobial resistance
- magnetic resonance imaging
- cell surface
- gram negative
- climate change
- immune response
- risk assessment
- dendritic cells
- neural network
- human health