Login / Signup

Genetic Variation of Magnaporthe oryzae Population in Hunan Province.

Zhirong PengYuefeng FuFan WangQiqi LiuYi LiZhengbing ZhangLi YinXiao-Lin ChenJingbo XuHuafeng DengJunjie Xing
Published in: Journal of fungi (Basel, Switzerland) (2023)
Studies on the population structure and variation of Magnaporthe oryzae in fields are of great significance for the control of rice blast disease. In this study, a total of 462 isolates isolated from different areas of Hunan Province in 2016 and 2018 were analyzed for their population structure and variation tendency. The results showed that from 2016 to 2018, the concentration of fungal races of M. oryzae increased and the diversity decreased; furthermore, 218 isolates in 2016 belonged to ZA, ZB, ZC, ZE, ZF and ZG, with a total of 6 groups and 29 races, in which the dominant-population ZB group accounted for 66.2%; meanwhile, in 2018, 244 isolates were classified into 4 groups and 21 races, including ZA, ZB, ZC and ZG, in which the dominant-population ZB group accounted for 72.54%. In 2018, isolates of ZD, ZE and ZF populations were absent, and the number of total races and isolates of the ZA and ZC groups decreased. Fungal pathogenicity was identified, with 24 monogenic lines (MLs) carrying 24 major R genes. The resistance frequency of R genes to fungal isolates in 2018 decreased significantly, in which except Pikm was 64.5%, the other monogenic lines were less than 50%. Rep-PCR analysis for isolates of Guidong in Hunan also showed that fungal diversity decreased gradually. The influence of R genes on fungal variation was analyzed. The pathogenicity of isolates purified from Xiangwanxian 11 planted with monogenic lines was significantly more enhanced than those without monogenic lines. All the results indicated that in recent years, the fungal abundance in Hunan has decreased while fungal pathogenicity has increased significantly. This study will greatly benefit rice-resistance breeding and the control of rice blast disease in Hunan Province.
Keyphrases
  • genetic diversity
  • genome wide
  • cell wall
  • gene expression
  • cystic fibrosis