Novel joint catalytic properties of Fe and N co-doped graphene for CO oxidation.
Hong-Bo WangYouguo YanJinghua GuoXuedong OuXike WangGang ChenPublished in: Physical chemistry chemical physics : PCCP (2020)
Using density functional theory, we have performed detailed calculations of the joint catalytic activity of graphene co-doped with Fe and N atoms. The Fe atom can be located on single vacancy graphene and acts as the active site. Due to the strong attraction of the Fe ion, the O-O bond length of the O2 molecule is elongated, which decreases the bonding energy between the O atoms. The energy barrier of CO oxidization is 0.84 eV. When N atoms are doped into the graphene, the interactions between the Fe ions and O2 molecules are stronger, and the O-O bond lengths are elongated further, which makes the desorption of the quasi-CO2 molecule easier. The energy barriers are reduced to 0.62 eV, 0.49 eV, and 0.33 eV for graphene doped with one, two and three N atoms, respectively. The O atom remaining on the Fe ion can form a CO2 molecule with an additional CO molecule. The produced CO2 molecule can be released with a small or even zero energy barrier by adsorbing an O2 molecule. The adsorbed O2 molecule is then involved in the next reaction process, and the material can be used as a recycled catalyst.
Keyphrases