The potential contribution of house crickets to the dietary zinc content and nutrient adequacy in young Kenyan children: a linear programming analysis using Optifood.
Hester L CoppoolseKarin J Borgonjen-van den BergProsper ChoperaMarijke HummelGeorge GrimbleInge BrouwerAlida Melse-BoonstraPublished in: The British journal of nutrition (2022)
Zinc deficiency arising from inadequate dietary intake of bioavailable zinc is common in children in developing countries. Because house crickets are a rich source of zinc, their consumption could be an effective public health measure to combat zinc deficiency. This study used Optifood, a tool based on linear programming analysis, to develop food-based dietary recommendations (FBR) and predict whether dietary house crickets can improve both zinc and overall nutrient adequacy of children's diets. Two quantitative, multi-pass 24-hour recalls from 47 children aged two and three years residing in rural Kenya were collected and used to derive model parameters, including a list of commonly consumed foods, median serving sizes, and frequency of consumption. Two scenarios were modelled: (i) FBR based on local available foods and (ii) FBR based on local available foods with house crickets. Results revealed that zinc would cease to be a problem nutrient when including house crickets to children's diets (PRI coverage for zinc increased from 89% to 121% in the best-case scenario). FBR based on both scenarios could ensure nutrient adequacy for all nutrients except for fat, but energy percentage (E%) for fat was higher when house crickets were included in the diet (23 E% versus 19 E%). This manoeuvre, combined with realistic changes in dietary practices, could therefore improve dietary zinc content and ensure adequacy for twelve nutrients for Kenyan children. Further research is needed to render these theoretical recommendations, practical.