Use of historical and contemporary distribution of mammals in China to inform conservation.
Baoguo LiHe ZhangChengliang WangRong HouPei ZhangGang HeSongtao GuoShiyi TangBao-Guo LiCharles OxnardRuliang PanPublished in: Conservation biology : the journal of the Society for Conservation Biology (2021)
A systematic understanding of dynamic animal extinction trajectories for different regions in a nation like China is critically important to developing practical conservation strategies. We explored historical and contemporary changes in terrestrial mammalian diversity to determine how diversity in each of the 5 regions in China has changed over time and to examine the conservation potential of these regions. We used records from databases on Pleistocene mammalian fossils and historical distribution records (1175-2020) for Primates (as a case study) to reconstruct evolutionary and historical distribution trajectories of the 11 orders of terrestrial mammals and to predict their prospective survival based on the national conservation strategy applied. The results indicated that since the Pleistocene, 4-5 mammalian orders have been lost in the northeast, 3 in central China, 2 along the coast, and 1 in the northwest. In the southwest, all 11 orders were maintained. Contemporarily, the coast and southwest had the highest and second-highest species densities. The southwest region and southeastern sections of the northwest region were the most historically and contemporarily diverse areas, which suggests that they should be the first priority for protected area (PA) designation. The central and coastal areas should be secondarily prioritized. In these 2 regions, conservation should focus on human coexistence with nature. Less attention should be paid to the PA in the northeast and western northwest because in these areas ecosystems are depauperate and the climate is harsh. Conservation in these areas should focus principally on avoiding further human encroachment on natural areas. Article impact statement: Historical and contemporary patterns of extinction can be a basis for mammalian conservation strategies.