Catalytic Cycloisomerization onto a Carbonyl Oxygen.
Shicheng ShiJonathan L KuoTao ChenJack R NortonPublished in: Organic letters (2020)
We have found that terminal N-vinylindoles bearing cycloalkanone substituents are excellent hydrogen atom acceptors, generating α-aminyl radicals with a variety of catalysts (Co(II)/H2 or Co(III)Cl precatalysts with silane reductants). These radicals can be converted to internal vinylindoles but eventually add to the oxygen of the cycloalkanone substituents. These cyclizations eventually furnish a densely functionalized dihydrofuran (a net cycloisomerization). The internal vinylindoles are slowly converted to the dihydrofurans, but the final cycloisomerization/isomerization ratio is affected by the size of the cycloalkanone ring (seven- and eight-membered rings give the highest ratio). These results demonstrate how HAT can isomerize substrates in nonintuitive ways, here leading to the first HAT-promoted formation of a C-O bond.