Login / Signup

Bond-Breaking Reactions Encounter Distinct Solvent Environments Causing Breakdown of Linear Response.

Andy VongBenjamin J Schwartz
Published in: The journal of physical chemistry letters (2022)
Solvent effects are important for understanding solution-phase chemical reactions. Surprisingly, very few studies have explored how solvent dynamics change during the course of a reaction with solutes that encounter a wide range of configurations. Here, we use quantum simulation methods to explore the solvent dynamics during a solution-phase bond-breaking reaction: the photodissociation of Na 2 + in liquid Ar. We find that the solute experiences a small number of distinct solvent environments that change in a discrete fashion as the bond lengthens. In characterizing the solvent environments, we show also that linear response fails by all measures, even when nonstationarity of solvent dynamics is considered. This observation of distinct solvent response environments with a solvent that can undergo only translational motions highlights the complexity of solute-solvent interactions, but that there are only a few environments gives hope to the idea that solvation dynamics can be understood for solution-phase reactions that explore a wide configuration space.
Keyphrases
  • ionic liquid
  • solar cells
  • electron transfer
  • quantum dots