Human induced pluripotent stem cell-derived salivary gland organoids model SARS-CoV-2 infection and replication.
Junichi TanakaHidenobu SenpukuMiho OgawaRika YasuharaShintaro OhnumaKoki TakamatsuTakashi WatanabeYo MabuchiShiro NakamuraShoko IshidaTomohiko SadaokaTakashi TakakiTatsuo ShirotaToshikazu ShimaneTomio InoueTakayoshi SakaiMunemasa MoriTakashi TsujiIchiro SaitoKenji MishimaPublished in: Nature cell biology (2022)
Salivary glands act as virus reservoirs in various infectious diseases and have been reported to be targeted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the mechanisms underlying infection and replication in salivary glands are still enigmatic due to the lack of proper in vitro models. Here, we show that human induced salivary glands (hiSGs) generated from human induced pluripotent stem cells can be infected with SARS-CoV-2. The hiSGs exhibit properties similar to those of embryonic salivary glands and are a valuable tool for the functional analysis of genes during development. Orthotopically transplanted hiSGs can be engrafted at a recipient site in mice and show a mature phenotype. In addition, we confirm SARS-CoV-2 infection and replication in hiSGs. SARS-CoV-2 derived from saliva in asymptomatic individuals may participate in the spread of the virus. hiSGs may be a promising model for investigating the role of salivary glands as a virus reservoir.