Login / Signup

Hand anthropometry and the limits of aperture separation determine the utility of Weber's law in grasping and manual estimation.

Naila AyalaGordon BinstedMatthew Heath
Published in: Experimental brain research (2018)
Recent work proposed that biomechanical constraints in aperture separation limit the utility of Weber's law in determining whether dissociable visual codes support grasping and manual estimation. We tested this assertion by having participants precision grasp, manually estimate and complete a method of adjustment task to targets scaled within and beyond the range of their maximal aperture separation (i.e., from 20 to 140% of participant-specific maximal aperture separation: MAS). For grasping and manual estimation tasks, just-noticeable-difference (JND) scores were computed via the within-participant standard deviations in peak grip aperture, whereas method of adjustment JNDs were computed via the within-participant standard deviations in response output. Method of adjustment JNDs increased linearly across the range of targets; that is, responses adhered to Weber's law. Manual estimation JNDs linearly increased for targets 20-100% of MAS and then decreased for targets 120-140% of MAS. In turn, grasping JNDs for targets 20% through 80% of MAS did not differ and were larger than targets 100-140% of MAS. That manual estimation and grasping showed a decrease in JNDs for the largest targets indicates that participants were at their biomechanical limits in aperture shaping, and the fact that the target showing the JND decrease differed between tasks (i.e., manual estimation = 100% of MAS; grasping = 80% of MAS) is attributed to the fact that grasping-but not manual estimation-requires a safety-margin task-set. Accordingly, manual estimations and grasping across a range of functionally 'graspable' targets, respectively, adhered to and violated Weber's law-a result interpreted to reflect the use of dissociable visual codes.
Keyphrases
  • liquid chromatography
  • working memory
  • magnetic resonance imaging
  • blood pressure
  • heart rate
  • mass spectrometry
  • body composition
  • quantum dots
  • single molecule
  • finite element analysis