Login / Signup

Nonequilibrium phases of a biomolecular condensate facilitated by enzyme activity.

Sebastian T CoupeNikta Fakhri
Published in: bioRxiv : the preprint server for biology (2024)
Biomolecular condensates represent a frontier in cellular organization, existing as dynamic materials driven out of equilibrium by active cellular processes. Here we explore active mechanisms of condensate regulation by examining the interplay between DEAD-box helicase activity and RNA base-pairing interactions within ribonucleoprotein condensates. We demonstrate how the ATP-dependent activity of DEAD-box helicases-a key class of enzymes in condensate regulation-acts as a nonequilibrium driver of condensate properties through the continuous remodeling of RNA interactions. By combining the LAF-1 DEAD-box helicase with a designer RNA hairpin concatemer, we unveil a complex landscape of dynamic behaviors, including time-dependent alterations in RNA partitioning, evolving condensate morphologies, and shifting condensate dynamics. Importantly, we reveal an antagonistic relationship between RNA secondary structure and helicase activity which promotes condensate homogeneity via a nonequilibrium steady state. By elucidating these nonequilibrium mechanisms, we gain a deeper understanding of cellular organization and expand the potential for active synthetic condensate systems.
Keyphrases
  • transcription factor
  • nucleic acid
  • binding protein
  • single cell
  • genome wide
  • human health
  • resting state