Login / Signup

Clar Goblet and Aromaticity Driven Multiradical Nanographenes.

Sara Gil-GuerreroManuel Melle-FrancoMaría de Los Ángeles Peña-GallegoMarcos Mandado
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2020)
The Clar Goblet, the first radical bowtie nanographene proposed by Erich Clar nearly 50 years ago, was recently synthesized. Bowtie nanographenes present quasi-degenerate magnetic ground states, which make them so elusive as unique. A thorough analysis is presented of the spin-state energetics of Clar Goblet and bowtie nanographenes by a battery of existing and novel ab initio procedures ranging from density functional theory to complete active space Hamiltonians. With this, it was proven that π radicals of bowtie nanographenes sit on BP (Benzo[cd]Pyrene) moieties driven by their local aromaticity, a purely chemical concept, which confers global stability to the whole structure. Besides, a novel Pauli energy densities analysis provided a visual intuitive explanation for this preference. These findings allow envisioning that analogous bowtie nanographenes with arbitrary polyradical character are not only feasible at the molecular scale but will share Clar Goblet's peculiar properties.
Keyphrases
  • density functional theory
  • molecular dynamics
  • single molecule
  • mass spectrometry
  • solid state
  • ionic liquid