Login / Signup

Phylogeography of the ambrosia beetle Euwallacea interjectus (Coleoptera: Curculionidae: Scolytinae): an emerging poplar pest and its Fusarium mutualists from poplar plantations in China.

Shengchang LaiNan JiangJianguo WangYang ZhouXiaohang YuYaping WuJinhua YangLuLu DaiDe-Jun Hao
Published in: Journal of economic entomology (2024)
Native to Asia, Euwallacea interjectus (Blandford) (Coleoptera: Curculionidae: Scolytinae) is a destructive and invasive pest of live trees, and now it has been found in the United States and Argentina. In recent years, this pest appeared in high densities in poplar monocultures from Eastern China (Jiangsu and Shanghai) and Argentina and caused significant poplar mortality. However, the origin of the pests related to tree damage and the Fusarium mutualists from some poplar zones in China remained unclear. Here, we provided a broader phylogeographic analysis of E. interjectus based on the mitochondrial gene (cytochrome c oxidase I) to determine the global genetic structure of this species. Five mitochondrial lineages were found in the native area. Populations introduced to the United States were originated from 4 localities. The Argentine population was derived from Japan. The species was observed with strikingly high level of cytochrome c oxidase I intraspecific divergence that exceeded interspecific divergence, but the high intraspecific variation was correlated with geographical locations among the native populations. Two nuclear genes (arginine kinase and carbamoyl-phosphate synthetase 2-aspartate transcarbamylase-dihydroorotase) were more conservative, and intraspecific differences were lower than interspecific differences. The mitochondrial genetic variation was probably caused by evolution of lineages among geographically isolated populations. But it is immature to infer the existence of cryptic species based on cytochrome c oxidase I differences. All samples collected from poplar populations were indigenous and formed close relationship with a specimen from eastern and southern China. Surprisingly, pests from poplar populations in Jiangsu and Shanghai showed different haplotypes and mutualists. This suggested that the control strategies should consider the genetic and mutualistic diversity of beetles at different poplar localities.
Keyphrases
  • genetic diversity
  • oxidative stress
  • genome wide
  • copy number
  • south africa
  • nitric oxide
  • cardiovascular disease
  • gene expression
  • coronary artery disease
  • genome wide analysis