Login / Signup

Exchange Bias in a Layered Metal-Organic Topological Spin Glass.

Ryan A MurphyLucy E DaragoMichael E ZiebelElizabeth A PetersonEdmond W ZaiaMichael W MaraDaniel LussierEver O VelasquezDavid K ShuhJeffrey J UrbanJeffrey B NeatonJeffrey R Long
Published in: ACS central science (2021)
The discovery of conductive and magnetic two-dimensional (2D) materials is critical for the development of next generation spintronics devices. Coordination chemistry in particular represents a highly versatile, though underutilized, route toward the synthesis of such materials with designer lattices. Here, we report the synthesis of a conductive, layered 2D metal-organic kagome lattice, Mn3(C6S6), using mild solution-phase chemistry. Strong geometric spin frustration in this system mediates spin freezing at low temperatures, which results in glassy magnetic dynamics consistent with a rare geometrically frustrated (topological) spin glass. Notably, we show that this geometric frustration engenders a large, tunable exchange bias of 1625 Oe in Mn3(C6S6), providing the first example of exchange bias in a coordination solid or a topological spin glass. Exchange bias is a critical component in a number of spintronics applications, but it is difficult to rationally tune, as it typically arises due to structural disorder. This work outlines a new strategy for engineering exchange bias systems using single-phase, crystalline lattices. More generally, these results demonstrate the potential utility of geometric frustration in the design of new nanoscale spintronic materials.
Keyphrases