In the treatment process of cancers like oral cancer, it is necessary to employ extensive surgical resection to achieve cancer eradication. However, this often results in damage to crucial functions such as chewing and speaking, leading to a poorer prognosis and a reduced quality of life. To address this issue, a multifunctional theranostic agent named MBPN-T-BTD has been developed by precisely modulating the excitation state energy distribution in the radiative/nonradiative decay pathways using the characteristics of twisted intramolecular charge transfer and aggregation-induced emission. This agent outperforms clinically utilized indocyanine green (ICG) in various aspects, including the second near-infrared window (NIR-II, 1000-1700 nm) fluorescence (FL) and photothermal conversion efficiency (PCE). Its nanoparticle form (BTB NPs) can be effectively used for high-contrast delineation of lymph node mapping and tongue and floor of mouth cancers using NIR-II FL, enabling surgeons to achieve more precise and thorough tumor clearance. For tumors located in close proximity to vital organs such as the tongue, the exceptional PCE (71.96%) of BTB NPs allows for targeted photothermal ablation with minimal damage to peripheral healthy tissues. This contribution provides a safer and more effective paradigm for minimally invasive or noninvasive treatment of oral cancer, ensuring the preservation of normal organ functions and showing potential for improving the overall prognosis and quality of life for cancer patients.
Keyphrases
- photodynamic therapy
- fluorescence imaging
- drug release
- cancer therapy
- lymph node
- drug delivery
- minimally invasive
- high resolution
- oxidative stress
- fluorescent probe
- magnetic resonance
- signaling pathway
- single molecule
- combination therapy
- computed tomography
- radiation therapy
- neoadjuvant chemotherapy
- rectal cancer
- contrast enhanced
- squamous cell
- solid state
- helicobacter pylori
- human health
- helicobacter pylori infection