Login / Signup

Liquid structure of bistable responsive macromolecules using mean-field density-functional theory.

Arturo Moncho-JordáNils GöthJoachim Dzubiella
Published in: Soft matter (2023)
Macromolecular crowding typically applies to biomolecular and polymer-based systems in which the individual particles often feature a two-state folded/unfolded or coil-to-globule transition, such as found for proteins and peptides, DNA and RNA, or supramolecular polymers. Here, we employ a mean-field density functional theory (DFT) of a model of soft and bistable responsive colloids (RCs) in which the size of the macromolecule is explicitly resolved as a degree of freedom living in a bimodal 'Landau' energy landscape (exhibiting big and small states), thus directly responding to the crowding environment. Using this RC-DFT we study the effects of self-crowding on the liquid bulk structure and thermodynamics for different energy barriers and softnesses of the bimodal energy landscape, in conditions close to the coil-to-globule transition. We find substantial crowding effects on the internal distributions, a complex polydispersity behavior, and quasi-universal compression curves for increasing (generalized) packing fractions. Moreover, we uncover distinct signatures of bimodal versus unimodal behavior in the particle compression. Finally, the analysis of the pair structure - derived from the test particle route - reveals that the microstructure of the liquid is quite inhomogeneous due to local depletion effects, tuneable by particle softness.
Keyphrases
  • density functional theory
  • molecular dynamics
  • ionic liquid
  • single cell
  • machine learning
  • white matter
  • single molecule
  • dna methylation
  • multiple sclerosis
  • water soluble
  • amino acid