Login / Signup

Evidence of high-temperature exciton condensation in a two-dimensional semimetal.

Qiang GaoYang-Hao ChanYuzhe WangHaotian ZhangPu JinxuShengtao CuiYichen YangZhengtai LiuDawei ShenZhe SunJuan JiangTai-Chang ChiangPeng Chen
Published in: Nature communications (2023)
Electrons and holes can spontaneously form excitons and condense in a semimetal or semiconductor, as predicted decades ago. This type of Bose condensation can happen at much higher temperatures in comparison with dilute atomic gases. Two-dimensional (2D) materials with reduced Coulomb screening around the Fermi level are promising for realizing such a system. Here we report a change in the band structure accompanied by a phase transition at about 180 K in single-layer ZrTe 2 based on angle-resolved photoemission spectroscopy (ARPES) measurements. Below the transition temperature, gap opening and development of an ultra-flat band top around the zone center are observed. This gap and the phase transition are rapidly suppressed with extra carrier densities introduced by adding more layers or dopants on the surface. The results suggest the formation of an excitonic insulating ground state in single-layer ZrTe 2 , and the findings are rationalized by first-principles calculations and a self-consistent mean-field theory. Our study provides evidence for exciton condensation in a 2D semimetal and demonstrates strong dimensionality effects on the formation of intrinsic bound electron-hole pairs in solids.
Keyphrases
  • high temperature
  • high resolution
  • solar cells
  • density functional theory
  • single molecule
  • molecular dynamics simulations
  • room temperature
  • quantum dots
  • clinical evaluation
  • perovskite solar cells