DETERMINATION OF THE NEUTRON CONTAMINATION DURING BRAIN RADIOTHERAPY USING A MODERATED-BORON TRIFLUORIDE DETECTOR AND THE MCNP MONTE CARLO CODE.
Soheil ElmtalabAhmad ShaneiMohammad Hossein Choopan DastjerdiHrvoje BrkićIraj AbediAlireza AmouheidariPublished in: Radiation protection dosimetry (2022)
This study aimed to determine the neutron dose equivalent to the thyroid gland and eye lens in brain tumor radiation therapy with 15- and 18-MV three-dimensional conformal methods (3D-CRT). A Monte Carlo simulation was performed using the Monte Carlo N-particle transport code to calculate neutron fluence and ambient dose equivalent (H*(10)). Afterward, these parameters were measured using a model NRD roentgen equivalent in man (REM) neutron detector (Thermo Electron Corporation, USA) equipped with Eberline's ASP-2e rate meter. Finally, the organ neutron dose equivalent was obtained by applying depth corrections to the measured ambient dose equivalent at the distance of the organ center from the central beam axis. The ratio of the out-of-field photon dose equivalent, measured previously, to the neutron dose equivalent in the eye lens was high due to its proximity to the radiation field. In contrast, this ratio remained unexpectedly high in the thyroid gland that is far from the central beam axis (about 15 cm). The calculated neutron parameters agreed with the measurements. The present study findings indicate that external field photon dose is the main source of thyroid gland biological effects in radiotherapy of brain tumors. In addition, it is appropriate to apply the model NRD REM neutron detector for measuring neutron contamination from high-energy linear accelerators inside and outside the treatment field.