Login / Signup

A comparison of coil combination strategies in 3D multi-channel MRSI reconstruction for patients with brain tumors.

Maryam VarethJanine M LupoPeder Eric Zufall LarsonSarah Nelson
Published in: NMR in biomedicine (2018)
The goal of this study was to find the most robust algorithm for a phase-sensitive coil combination of 3D single-cycle and lactate-edited, multi-channel H-1 point-resolved spectroscopy (PRESS) localized echo planar spectroscopic imaging (EPSI) data for clinical applications in the brain. Data were acquired over 5-10 minutes at 3T using 8- or 32-channel array coils. Peak referencing with residual water and N-acetyl-aspartate, first-point phasing, generalized least squared (GLS) and whitened singular-value decomposition (WSVD) combination algorithms were evaluated relative to unsuppressed water with data from a phantom, six volunteers and 55 patients with brain tumors. Comparison metrics were signal-to-noise ratio, coefficient of variance and percent signal increase. Where residual water was present, using it as a reference peak for phasing and weighting factors from an imaging calibration scan gave the best overall performance. Greater improvement was seen for large selected volumes (>720 cm3 ) and for the 32-channel array (25%) compared with the 8-channel array (19%). Applying voxel-by-voxel phase corrections produced a larger increase in performance for the 32- versus 8-channel coil. We conclude that, for clinically relevant 3D H-1 PRESS localized EPSI studies, the most robust technique employed individual phase maps generated from high residual water and individual amplitude maps generated from calibration scans.
Keyphrases