Login / Signup

The possible neurobehavioral protective effects of natural antioxidant against phototoxicity attenuation of antimicrobial quinolone group in rats.

Rania YahiaMarwa A MasoudMohamed S ShededHanaa A Mansour
Published in: Journal of biochemical and molecular toxicology (2020)
The fluoroquinolones absorb light in the 320 to 330  nm ultraviolet A (UV-A) wavelength and produce reactive oxygen species (ROS) such as superoxide anion, hydroxyl radical, and hydrogen peroxide; thus, the photodynamic generation of ROS may be the basis of phototoxicity of quinolones in human beings and animals. This study aimed to evaluate the damaging effects of UV-A radiation at different periods of exposure on rats' brains administered with ciprofloxacin. Ciprofloxacin administration in UV-A exposed animals exaggerated the brain-oxidative stress biomarkers and decreased the locomotor activity. Exposure of rats to UV-A for 60 minutes induced a significant increase of malondialdehyde (MDA), myeloperoxidase (MPO), and a decrease in the values of superoxide dismutase (SOD), glutathione (GSH) compared to a normal one; these changes were UV-A exposure time-dependent. However, the administration of vitamin C to the UV-60-treated group decreased the values of MDA, MPO, and shifted the values of SOD, GSH toward the normal values. Vitamin C, probably due to its strong antioxidant properties, could improve and partially counteract the toxic effect of UV-A on oxidative stress parameters and prevent the damage in rat's brain tissues.
Keyphrases