Login / Signup

Mechanisms of the Ethynyl Radical Reaction with Molecular Oxygen.

Michael C BowmanAlexandra D HeideJustin M TurneyHenry F Schaefer
Published in: The journal of physical chemistry. A (2018)
The ethynyl radical, •C2H, is a key intermediate in the combustion of various alkynes. Once produced, the ethynyl radical will rapidly react with molecular oxygen to produce a variety of products. This research presents the first comprehensive high level theoretical study of the reaction of the •C2H (2Σ+) radical with molecular oxygen (3Σg-). Correlation methods as complete as CCSDT(Q) were used; basis sets as large as cc-pV6Z were adopted. Focal point analysis was employed to approach relative energies within the bounds of chemical accuracy (≤1 kcal mol-1). Two dominate reaction pathways from the ethynyl peroxy radical include oxygen-oxygen cleavage from the ethynyl peroxy radical that is initially formed to produce HCCO (2A″) and O (3P) and an isomerization of the ethynyl peroxy radical to eventually yield HCO (2A') and CO (1Σ+). The branching ratio between these two competitive reaction pathways was determined to be 1:1 at 298 K. Minor reaction pathways leading to the production of CO2 (1Σg+) and CH (2Π, 4Σ-, 2Δ) were also characterized. The absence of CCO (3Σ-) and OH (2Π) was explained in terms competition with more accessible reaction pathways.
Keyphrases
  • electron transfer
  • risk assessment
  • particulate matter
  • room temperature
  • density functional theory
  • heavy metals