Considerable amounts of microplastics (MPs) are stocked in plant rhizospheres, yielding adverse effects on rhizospheric microorganisms and threatening plant health. However, the adaptation of the rhizospheric microbiota for MPs remains largely unknown. Here, to evaluate the adaptive strategies of rhizospheric bacterial communities against MPs, we characterized the spatial dissimilarities in MPs properties and bacterial communities from mangrove non-rhizosphere to rhizosphere to root hair sediments. Consequently, two strategies were uncovered: (1) Bacterial communities showed significant niche differentiation induced by the increasingly enriched MPs evaluated by piecewise structural equation modeling (piecewise SEM), as increasing specialization (10.2 % to 19.4 % to 23.0 % of specialists) and decreasing generalization (10.4 % to 10.2 % to 8.7 % of generalists). (2) A self-remediation strategy of enhancing microbial plastic-degrading potentials was determined in bacterial communities, tightly coupled to the increase of specialists (linear regression analysis, R 2 = 0.54, P < 0.001) and increasing MPs weathering degrees visualized by the scanning electron microscopy (SEM) from non-rhizosphere to rhizosphere to root hair regions. Our study provides a novel insight into the ecological strategies that rhizospheric microbes utilize against MPs, and broadens our knowledge of the interaction between soil microbes and global MPs pollution.