Staggered Linear Assembly of Spherical-Cap Colloids.
Yogesh ShelkeManigandan SabapathyEthayaraja ManiPublished in: Langmuir : the ACS journal of surfaces and colloids (2017)
Linear assembly of colloidal particles is of fundamental interest in visualizing polymer dynamics and living organisms. We have developed a fluid-fluid interface-based method to synthesize spherical-cap polymeric latex particles. These particles are shown to spontaneously self-assemble in zigzag arrangement. The linear assembly is induced due to the shape anisotropy (one side is curved and the other side is nearly flat) and heterogeneous charge distribution on the particle surfaces. The necessities of these conditions are justified within the framework of DLVO theory. Spherical-cap particles of various size and aspect ratio reproduced the observed linear assembly, thus demonstrating the robustness of the self-assembly mechanism. While these types of assemblies are observed in spherical particles using microfluidic devices or electric field, the proposed approach is rather facile and does not require any external field. These novel assemblies could be potentially useful to understand kinetics of nucleation and growth of amyloidogenic proteins and to prepare artificial swimming microorganisms.